Python Errors When Migrating from v2 to v3

Charles E. Matthews
Fifth Generation Systems, Ltd.
April 8, 2021

Software failure diagnosis is a complex task. However, there are times when this task complexity can be
significantly reduced. One example when diagnostic tasks are simpler than normal is when the
application design remains unchanged, but errors occur because the underlying language
compiler/interpreter undergoes a version change. This report documents errors in a software package
that resulted from changing the version of Python that executed the application. There was no change
to the application design. Only the Python version change caused the application errors. It is instructive
to analyze the errors that occurred and the methods that one can use to find them efficiently.

By analyzing the types of errors that occurred, a clever developer could devise ways to improve the
diagnostic task for other environmental changes as well. Changes that could cause similar types of errors
are: a) the version of a component library changes, b) the interface for a connected device changes, c)
the application migrates to a different platform, etc.

Application Description

This application is an open source application — the Repo package. This application consists of 36 Python
files in two directories. It is a component of the AOSP — the Android Open Source Project. Before a
developer can build an Android image for a target hardware platform, he must download numerous files
from various git repositories. This build process is an extremely complex task. The Repo component
manages some of the complexity in interacting with the various git repositories.

During the build process, an initial Bash script downloads a number of Python files and an executive
Bash script! for Repo. The executive controller calls the Repo package multiple times to perform various
executive functions.

Error Categories

The errors fall into three categories that indicate the degree of difficulty that it took to diagnose and fix
the error. The Python interpreter immediately identified some syntax errors as failures as soon as it read
the Python file. Because the Python executive interprets rather than compiles a source file, all
processing ends when the first error occurs. The debug task then becomes a sequence of “run the app”,
“fix the resulting error”, and “repeat to find the next error”. Consequently, the debug task became more

1 The executive Bash script performs a check on the versions of Python2 and Python3 that are installed on the
development machine. The script then determines whether the Repo component is executed with Python2 or
Python3. If the script chooses Python2 to execute the Repo files, it sends multiple warning messages to the user —
“repo: warning: Python 2 is no longer supported; Please upgrade to Python 3.6+”. These messages are examples of
an unfortunate paradox because Python3 forces the Repo execution to fail.

efficient by identifying the coding pattern that caused the syntax error and searching all the files for
similar statement patterns. The syntax errors in this category are simple command patterns that are
easily searchable.

Another category of errors were also simple syntax errors, but the interpreter did not identify them as a
failure until it executed the code. These errors have a slightly higher complexity than the first category
because they will not cause a failure if the specific command path is not executed. Because command
paths through a software application are logic dependent, some errors will not be flagged by the
interpreter if its statement path is not taken. Fortunately, most of these errors also have a simple syntax
that is easily searchable. One of the errors in this category, B4 (see the following section), is easily
searchable, but it is not instantly apparent whether the command pattern is a real error or is a correct
sequence. The developer must do additional analysis to determine whether the code is truly an error or
not.

The third category of errors are command sequences that appear to be syntactically correct but result in
incorrect operation. Although these errors require a more detailed diagnosis to identify their solution,
the number of errors in this category is relatively small — only 7.4% of the total errors.

Errors that are immediate interpreter failures.

The Python interpreter immediately flags these commands as errors as soon as it reads the source file.
The fundamental cause for these errors is command syntax changes between Python2 and Python3. The
correction for syntactical errors is usually apparent, and the developer can quickly search all application
files for all locations of the error. Searching the files for other error locations is advisable because the
interpreter stops execution as soon as an error occurs. Therefore, only the first error occurrence is
flagged by the interpreter and all other occurrences are hidden until the developer initiates the next run
after a software update. 22.2% of the errors are in this category.

Al: Exception catches

try:
cmd.Execute (copts, cargs)
L £ lid .- e
except ManifestInvalidRevisionError as e:

print >>sys.stderr, 'error: %s' % str(e)
sys.exit (1)

Count =22

A2: Change syntax to raise exceptions

def CurrentWrapperVersion():
VERSION = None
pat = re.compile (r'"VERSION *=')
fd = open(MyWrapperPath())
for line in fd:
if pat.match(line):
fd.close ()
exec line
return VERSION

1 3 3 1
’

raise NameError ('No VERSION in repo script')

Count=7

A3: Change xrange operator to range
3 — 03 E =
for i in range (0, len(argv)):
if not argv([i].startswith('-"):
name = argv[i]
if 1 > 0:
glob = argv[:i]
argv = argv[i + 1:]
break

Count=3

A4: Change dictionary iterator from .iteritems() to .items()

3 —ia 113 - O
for name, id in all.items():
i1f name.startswith (R HEADS) :

name = name[len (R HEADS) :]
b = self.GetBranch (name)
b.current = name == current
b.published = None
b.revision = id

heads[name] = b

Count =10

A5: Change import urllib2 to import urllib.request or import urllib.error

- 11562
import urllib.request
import urllib.error

Count=2

A6: Change import cPickle

import—ePickle

import pickle as cPickle

Count=1

A7: Change import StringlO to from io import StringlO

importStringlO

from io import StringIO

Count=1

A8: Change import xmlrpclib to import xmirpc.client

import—xmlrpelib

import xmlrpc.client

Count=1

A9: When importing from a package, specify the package folder

from—syne—import—Syne

from subcmds.sync import Sync

Count=1

Errors that cause an interpreter failure when the statement is executed.

The interpreter flags these errors not when it reads the source file but when it executes the command.
Therefore the identification of these errors by the interpreter is path dependent. If the error occursin a
statement path that is not executed, the interpreter does not identify the error. Therefore the
diagnostic task is slightly more complex than the first category. However, because these errors are also
syntax errors, the developer can easily correct them, and he can easily search the source files for other
occurrences of the error. Again, the primary cause for these errors is syntax changes between Python2
and Python3. 70.4% of the errors are in this category.

B1: Change syntax for print statements

print(")
print(‘repo %s initialized in %s' % (type, self.manifest.topdir))

Count=35

B2: Change syntax for print statements that redirect to an output stream

def Sync NetworkHalf (self, quiet=False):
"""pPerform only the network IO portion of the sync process.
Local working directory/branch state is not affected.
is new = not self.Exists
if is new:
if not quiet:

print >>sys-stderr

. 7
print('', file=sys.stderr)
print('Initializing project %$s ...' % self.name,
file=sys.stderr)
self. InitGitDir()

Count =104

B3: GitConfig._cache_dict changed from strings to byte arrays

v = self. cachel key{name}]
v = self. cache[_ key(name) .encode ()]
Count =10

B4: Operators on byte arrays vs strings

The solution for this error is one of two options, but the choice is not readily apparent without some
additional analysis. Either the target object is supposed to be a string, or it is supposed to be a byte
array. If the target variable is supposed to be a string but is a byte array, then find the command that
sets the target variable and correct it. If the target variable is supposed to be a byte array, then change
the command to work with byte arrays.

for name in self. cache.keys():

p—=name-spltit{' ")
P = name.split(b'.')
if 2 == len(p):
section = p[0]
subsect = "'
else:
section = p[0]
subseet ="' Jeian{pfi-—31)

o ({ .
eind :
subsect = b'.'.join(p[1:-1])
if section not in d:
d[section] = set ()
d[section] .add (subsect)
self. section dict = d

Count=3

Errors that were caused by language changes from Python2 to Python3.

The interpreter does not flag these errors either when it reads the source file or when it executes the
source code. The source code causes incorrect behavior, and the developer must first recognize the
incorrect behavior and then correct the source code to produce correct behavior. None of the
corrections for these errors required a design change for the application. The developer can search the
repository of code for similar code patterns, but it is not easily apparent whether the pattern requires a
correction. The developer must do additional analysis before changing the code. 7.4% of the errors are
in this category.

C1: Replace exec statement

This block of code searches a file for a statement like “VERSION = (2, 8)”. If it occurs, the exec command
executes the line and updates the VERSION variable in the Python code. This command works in
Python2 but not in Python3. There may be a scoping issue in Python3 that prevents the Python variable
from being assigned. The solution required an alternate set of commands.

Def CurrentWrapperVersion() :

VERSION = None

pat = re.compile(r'”VERSION *=")

fd = open(MyWrapperPath())

for line in fd:

if pat.match(line):

fd.close()
exee—line
line = line[line.index("=") + 1:].strip(" () \n\z")
VERSION = tuple (map(int, line.split(", ")))
return VERSION

raise NameError, 'No VERSION in repo script'

Count=1

C2: Add “universal_newlines = True” to subprocess.Popen call
It appears that Python2 opens the process pipe in text mode by default. With Python3, the additional
parameter is required to open the pipe in text mode.

p = subprocess.Popen (command,
cwd = cwd,
env = env,
universal newlines = True,
stdin = stdin,
stdout = stdout,
stderr = stderr)

Count=1

C3: Open files in text mode instead of binary mode

Python2 appears to open files in text mode even though the file mode parameter indicates binary mode.
With Python3, the file mode must not be set for binary mode if text mode is desired.
def ReadPackedRefs (self):

path = os.path.join(self. gitdir, 'packed-refs')

try:

1 1
4

fd = open(path, 'r')
mtime = os.path.getmtime (path)
except IOError:
return
except OSError:
return
try:
for line in fd:
if 1line[0] =
continue
if 1line[0] == "~':
continue

'#':

line = line[:-1]

p = line.split (" ")
id = p[0]

name = pl[1l]

self. phyref[name] = id
finally:
fd.close ()
self. mtime['packed-refs'] = mtime
Count=5

C4: When writing directly to sys.stdout, flush the buffer before prompting for user input
With Python2, any write to sys.stdout completed before a subsequent read from sys.stdin occurred.
With Python3, it necessary to flush the sys.stdout buffer before reading the sys.stdin stream.

def Prompt (self, prompt, value):
mp = self.manifest.manifestProject
sys.stdout.write('%-10s [%s]: ' % (prompt, value))
sys.stdout. flush()
a = sys.stdin.readline () .strip()
if a == ""':
return value
return a

Count=6

C5: Change in operation of map command

It appears that the map command changed substantially between Python2 and Python3. In Python3, the
map command returns a map iterator. Amending the code to produce correct results was non-intuitive.

class Remote (object) :
"""Configuration options related to a remote.
def init (self, config, name):
self. config = config
self.name = name
self.url = self. Get('url'")
self.review = self. Get('review')
self.projectname = self. Get('projectname')
self-fetech =—map{lambda 3 RefSpec-FromString{x)+
self—Get{feteh!'—all=True})})
if len(self. Get('fetch',6 all=True)) ==
self.fetch = []
else:
self.fetch = [RefSpec.FromString(self. Get('fetch', all=True))]

self. review protocol = None

Count=3

Error Details

When executed with Python3, the Repo package has 18 errors that occur 216 times. Of the 36 Python
files, only 5 of them are error free. The file sync.py has the most number of errors (30), but the file
git_config.py has the most number of unique errors (9). The following tables tabulate the errors found
in each file.

Al A2 A3 A4 A5 A6 A7 A8 A9

color.py

command.py

editor.py 1

error.py

git_command.py

git_config.py 3 1 1 1
git_refs.py 2

main.py 4 1 1

manifest_xml.py 1 5

pager.py 1

progress.py

project.py 7 7 1
trace.py

__init__.py 1

abandon.py

branches.py

checkout.py

cherry_pick.py

diff.py

download.py

forall.py

grep.py

help.py

init.py

list.py

manifest.py

prune.py

rebase.py

selfupdate.py

smartsync.py

stage.py

start.py

status.py

sync.py

upload.py

version.py

22

B1

B2

B3

10

B4

color.py

command.py

editor.py

error.py

git_command.py

git_config.py

10

git_refs.py

main.py

12

manifest_xml.py

pager.py

progress.py

project.py

trace.py

__init__.py

abandon.py

branches.py

checkout.py

cherry_pick.py

o [N [~ |

diff.py

download.py

forall.py

grep.py

help.py

init.py

O |k [N~ s

list.py

RN oo [k

manifest.py

prune.py

rebase.py

selfupdate.py

smartsync.py

stage.py

start.py

status.py

sync.py

27

upload.py

version.py

O RN

C1

104

C2

10

C3

Ca

C5

color.py

command.py

editor.py

error.py

git_command.py

git_config.py

git_refs.py

main.py

manifest_xml.py

pager.py

progress.py

project.py

trace.py

__init__.py

A O W O O

22

19

27

abandon.py 4
branches.py 2
checkout.py 2
cherry_pick.py 8
diff.py 0
download.py 4
forall.py 1
grep.-py 3
help.py 9
init.py 3 20
list.py 1
manifest.py 3
prune.py 1
rebase.py 4
selfupdate.py 1
smartsync.py 1
stage.py 3
start.py 3
status.py 1 4
sync.py 30
upload.py 2 19
version.py 4

1 1 5 6 3 216

Lessons Learned

Software fault diagnosis is a complex cognitive task. Under normal circumstances, software faults are
unique from each other. However, it quickly became apparent that these faults were not unique. Many
faults were strongly similar to each other. When a developer observes patterns of similarity, one can
reduce the complexity of fault diagnosis by searching for other occurrences of the pattern. This action
reduces the amount of time required to produce a fault-free system.

This report documents the errors that occurred as a result of using the Python v3 compiler instead of
Python v2. Neither the application design nor its basic implementation changed. The errors, by
themselves, are not extremely important. What is important is the observation that many of the errors
appeared to be related. Because they appeared to be related, a couple of useful questions are, “Why are
they related?” and “Can the developer take advantage of the similarities?”

In this case, these errors are similar because their root cause is due to a change that is unrelated to the
application design or implementation — the compiler version change. This version change resulted in
groups of faults that were similar. By identifying the fault pattern, the developer can search the source

code for other occurrences of the pattern to identify other faults that have not yet been identified. This
reduces the total time that is necessary to produce a working system.

Although the Python compiler version change is the root cause for these errors, it is not the only change
that will produce fault patterns. An observant developer should keep this idea in mind when analyzing
faults and exploit any fault patterns when they are found.

