
Python Errors When Migrating from v2 to v3
Charles E. Matthews

Fifth Generation Systems, Ltd.

April 8, 2021

Software failure diagnosis is a complex task. However, there are times when this task complexity can be

significantly reduced. One example when diagnostic tasks are simpler than normal is when the

application design remains unchanged, but errors occur because the underlying language

compiler/interpreter undergoes a version change. This report documents errors in a software package

that resulted from changing the version of Python that executed the application. There was no change

to the application design. Only the Python version change caused the application errors. It is instructive

to analyze the errors that occurred and the methods that one can use to find them efficiently.

By analyzing the types of errors that occurred, a clever developer could devise ways to improve the

diagnostic task for other environmental changes as well. Changes that could cause similar types of errors

are: a) the version of a component library changes, b) the interface for a connected device changes, c)

the application migrates to a different platform, etc.

Application Description
This application is an open source application – the Repo package. This application consists of 36 Python

files in two directories. It is a component of the AOSP – the Android Open Source Project. Before a

developer can build an Android image for a target hardware platform, he must download numerous files

from various git repositories. This build process is an extremely complex task. The Repo component

manages some of the complexity in interacting with the various git repositories.

During the build process, an initial Bash script downloads a number of Python files and an executive

Bash script1 for Repo. The executive controller calls the Repo package multiple times to perform various

executive functions.

Error Categories
The errors fall into three categories that indicate the degree of difficulty that it took to diagnose and fix

the error. The Python interpreter immediately identified some syntax errors as failures as soon as it read

the Python file. Because the Python executive interprets rather than compiles a source file, all

processing ends when the first error occurs. The debug task then becomes a sequence of “run the app”,

“fix the resulting error”, and “repeat to find the next error”. Consequently, the debug task became more

1 The executive Bash script performs a check on the versions of Python2 and Python3 that are installed on the
development machine. The script then determines whether the Repo component is executed with Python2 or
Python3. If the script chooses Python2 to execute the Repo files, it sends multiple warning messages to the user –
“repo: warning: Python 2 is no longer supported; Please upgrade to Python 3.6+”. These messages are examples of
an unfortunate paradox because Python3 forces the Repo execution to fail.

efficient by identifying the coding pattern that caused the syntax error and searching all the files for

similar statement patterns. The syntax errors in this category are simple command patterns that are

easily searchable.

Another category of errors were also simple syntax errors, but the interpreter did not identify them as a

failure until it executed the code. These errors have a slightly higher complexity than the first category

because they will not cause a failure if the specific command path is not executed. Because command

paths through a software application are logic dependent, some errors will not be flagged by the

interpreter if its statement path is not taken. Fortunately, most of these errors also have a simple syntax

that is easily searchable. One of the errors in this category, B4 (see the following section), is easily

searchable, but it is not instantly apparent whether the command pattern is a real error or is a correct

sequence. The developer must do additional analysis to determine whether the code is truly an error or

not.

The third category of errors are command sequences that appear to be syntactically correct but result in

incorrect operation. Although these errors require a more detailed diagnosis to identify their solution,

the number of errors in this category is relatively small – only 7.4% of the total errors.

Errors that are immediate interpreter failures.
The Python interpreter immediately flags these commands as errors as soon as it reads the source file.

The fundamental cause for these errors is command syntax changes between Python2 and Python3. The

correction for syntactical errors is usually apparent, and the developer can quickly search all application

files for all locations of the error. Searching the files for other error locations is advisable because the

interpreter stops execution as soon as an error occurs. Therefore, only the first error occurrence is

flagged by the interpreter and all other occurrences are hidden until the developer initiates the next run

after a software update. 22.2% of the errors are in this category.

A1: Exception catches

try:

 cmd.Execute(copts, cargs)

except ManifestInvalidRevisionError, e:

except ManifestInvalidRevisionError as e:

 print >>sys.stderr, 'error: %s' % str(e)

 sys.exit(1)

Count = 22

A2: Change syntax to raise exceptions

def _CurrentWrapperVersion():

 VERSION = None

 pat = re.compile(r'^VERSION *=')

 fd = open(_MyWrapperPath())

 for line in fd:

 if pat.match(line):

 fd.close()

 exec line

 return VERSION

 raise NameError, 'No VERSION in repo script'

 raise NameError('No VERSION in repo script')

Count = 7

A3: Change xrange operator to range

for i in xrange(0, len(argv)):

for i in range(0, len(argv)):

 if not argv[i].startswith('-'):

 name = argv[i]

 if i > 0:

 glob = argv[:i]

 argv = argv[i + 1:]

 break

Count = 3

A4: Change dictionary iterator from .iteritems() to .items()
for name, id in all.iteritems():

for name, id in all.items():

 if name.startswith(R_HEADS):

 name = name[len(R_HEADS):]

 b = self.GetBranch(name)

 b.current = name == current

 b.published = None

 b.revision = id

 heads[name] = b

Count = 10

A5: Change import urllib2 to import urllib.request or import urllib.error

import urllib2

import urllib.request

import urllib.error

Count = 2

A6: Change import cPickle

import cPickle

import pickle as cPickle

Count = 1

A7: Change import StringIO to from io import StringIO
import StringIO

from io import StringIO

Count = 1

A8: Change import xmlrpclib to import xmlrpc.client
import xmlrpclib

import xmlrpc.client

Count = 1

A9: When importing from a package, specify the package folder
from sync import Sync

from subcmds.sync import Sync

Count = 1

Errors that cause an interpreter failure when the statement is executed.
The interpreter flags these errors not when it reads the source file but when it executes the command.

Therefore the identification of these errors by the interpreter is path dependent. If the error occurs in a

statement path that is not executed, the interpreter does not identify the error. Therefore the

diagnostic task is slightly more complex than the first category. However, because these errors are also

syntax errors, the developer can easily correct them, and he can easily search the source files for other

occurrences of the error. Again, the primary cause for these errors is syntax changes between Python2

and Python3. 70.4% of the errors are in this category.

B1: Change syntax for print statements

print ''

print 'repo %s initialized in %s' % (type, self.manifest.topdir)

print('')

print('repo %s initialized in %s' % (type, self.manifest.topdir))

Count = 35

B2: Change syntax for print statements that redirect to an output stream

def Sync_NetworkHalf(self, quiet=False):

 """Perform only the network IO portion of the sync process.

 Local working directory/branch state is not affected.

 """

 is_new = not self.Exists

 if is_new:

 if not quiet:

 print >>sys.stderr

 print >>sys.stderr, 'Initializing project %s ...' % self.name

 print('', file=sys.stderr)

 print('Initializing project %s ...' % self.name,

 file=sys.stderr)

 self._InitGitDir()

Count = 104

B3: GitConfig._cache_dict changed from strings to byte arrays

v = self._cache[_key(name)]

v = self._cache[_key(name).encode()]

Count = 10

B4: Operators on byte arrays vs strings

The solution for this error is one of two options, but the choice is not readily apparent without some

additional analysis. Either the target object is supposed to be a string, or it is supposed to be a byte

array. If the target variable is supposed to be a string but is a byte array, then find the command that

sets the target variable and correct it. If the target variable is supposed to be a byte array, then change

the command to work with byte arrays.

for name in self._cache.keys():

 p = name.split('.')

 p = name.split(b'.')

 if 2 == len(p):

 section = p[0]

 subsect = ''

 else:

 section = p[0]

 subsect = '.'.join(p[1:-1])

 subsect = b'.'.join(p[1:-1])

 if section not in d:

 d[section] = set()

 d[section].add(subsect)

 self._section_dict = d

Count = 3

Errors that were caused by language changes from Python2 to Python3.
The interpreter does not flag these errors either when it reads the source file or when it executes the

source code. The source code causes incorrect behavior, and the developer must first recognize the

incorrect behavior and then correct the source code to produce correct behavior. None of the

corrections for these errors required a design change for the application. The developer can search the

repository of code for similar code patterns, but it is not easily apparent whether the pattern requires a

correction. The developer must do additional analysis before changing the code. 7.4% of the errors are

in this category.

C1: Replace exec statement

This block of code searches a file for a statement like “VERSION = (2, 8)”. If it occurs, the exec command

executes the line and updates the VERSION variable in the Python code. This command works in

Python2 but not in Python3. There may be a scoping issue in Python3 that prevents the Python variable

from being assigned. The solution required an alternate set of commands.

Def _CurrentWrapperVersion():

 VERSION = None

 pat = re.compile(r'^VERSION *=')

 fd = open(_MyWrapperPath())

 for line in fd:

 if pat.match(line):

 fd.close()

 exec line

 line = line[line.index("=") + 1:].strip("() \n\r")

 VERSION = tuple(map(int, line.split(", ")))

 return VERSION

 raise NameError, 'No VERSION in repo script'

Count = 1

C2: Add “universal_newlines = True” to subprocess.Popen call

It appears that Python2 opens the process pipe in text mode by default. With Python3, the additional

parameter is required to open the pipe in text mode.

p = subprocess.Popen(command,

 cwd = cwd,

 env = env,

 universal_newlines = True,

 stdin = stdin,

 stdout = stdout,

 stderr = stderr)

Count = 1

C3: Open files in text mode instead of binary mode

Python2 appears to open files in text mode even though the file mode parameter indicates binary mode.

With Python3, the file mode must not be set for binary mode if text mode is desired.

def _ReadPackedRefs(self):

 path = os.path.join(self._gitdir, 'packed-refs')

 try:

 fd = open(path, 'rb')

 fd = open(path, 'r')

 mtime = os.path.getmtime(path)

 except IOError:

 return

 except OSError:

 return

 try:

 for line in fd:

 if line[0] == '#':

 continue

 if line[0] == '^':

 continue

 line = line[:-1]

 p = line.split(' ')

 id = p[0]

 name = p[1]

 self._phyref[name] = id

 finally:

 fd.close()

 self._mtime['packed-refs'] = mtime

Count = 5

C4: When writing directly to sys.stdout, flush the buffer before prompting for user input

With Python2, any write to sys.stdout completed before a subsequent read from sys.stdin occurred.

With Python3, it necessary to flush the sys.stdout buffer before reading the sys.stdin stream.

def _Prompt(self, prompt, value):

 mp = self.manifest.manifestProject

 sys.stdout.write('%-10s [%s]: ' % (prompt, value))

 sys.stdout.flush()

 a = sys.stdin.readline().strip()

 if a == '':

 return value

 return a

Count = 6

C5: Change in operation of map command

It appears that the map command changed substantially between Python2 and Python3. In Python3, the

map command returns a map iterator. Amending the code to produce correct results was non-intuitive.

class Remote(object):

 """Configuration options related to a remote.

 """

 def __init__(self, config, name):

 self._config = config

 self.name = name

 self.url = self._Get('url')

 self.review = self._Get('review')

 self.projectname = self._Get('projectname')

 self.fetch = map(lambda x: RefSpec.FromString(x),

 self._Get('fetch', all=True))

 if len(self._Get('fetch', all=True)) == 0:

 self.fetch = []

 else:

 self.fetch = [RefSpec.FromString(self._Get('fetch', all=True))]

 self._review_protocol = None

Count = 3

Error Details
When executed with Python3, the Repo package has 18 errors that occur 216 times. Of the 36 Python

files, only 5 of them are error free. The file sync.py has the most number of errors (30), but the file

git_config.py has the most number of unique errors (9). The following tables tabulate the errors found

in each file.

 A1 A2 A3 A4 A5 A6 A7 A8 A9

color.py

command.py

editor.py 1

error.py

git_command.py 1

git_config.py 3 1 1 1

git_refs.py 2

main.py 4 1 1

manifest_xml.py 1 5

pager.py 1

progress.py

project.py 7 7 1

trace.py

__init__.py 1

abandon.py

branches.py 1

checkout.py

cherry_pick.py

diff.py

download.py

forall.py

grep.py

help.py

init.py 1

list.py

manifest.py

prune.py

rebase.py

selfupdate.py

smartsync.py 1

stage.py 1

start.py

status.py 1

sync.py 1 1

upload.py 2

version.py

 22 7 3 10 2 1 1 1 1

 B1 B2 B3 B4

color.py

command.py

editor.py 1 1

error.py

git_command.py 2

git_config.py 1 10 2

git_refs.py

main.py 12

manifest_xml.py

pager.py 1

progress.py

project.py 2 6 1

trace.py 1

__init__.py

abandon.py 4

branches.py 1

checkout.py 2

cherry_pick.py 8

diff.py

download.py 4

forall.py 1

grep.py 1 2

help.py 8 1

init.py 7 9

list.py 1

manifest.py 3

prune.py 1

rebase.py 4

selfupdate.py 1

smartsync.py

stage.py 1 1

start.py 3

status.py 2

sync.py 1 27

upload.py 6 9

version.py 4

 35 104 10 3

 C1 C2 C3 C4 C5

color.py 0

command.py 0

editor.py 3

error.py 0

git_command.py 1 4

git_config.py 1 2 22

git_refs.py 2 4

main.py 1 19

manifest_xml.py 6

pager.py 2

progress.py 0

project.py 2 1 27

trace.py 1

__init__.py 1

abandon.py 4

branches.py 2

checkout.py 2

cherry_pick.py 8

diff.py 0

download.py 4

forall.py 1

grep.py 3

help.py 9

init.py 3 20

list.py 1

manifest.py 3

prune.py 1

rebase.py 4

selfupdate.py 1

smartsync.py 1

stage.py 3

start.py 3

status.py 1 4

sync.py 30

upload.py 2 19

version.py 4

 1 1 5 6 3 216

Lessons Learned
Software fault diagnosis is a complex cognitive task. Under normal circumstances, software faults are

unique from each other. However, it quickly became apparent that these faults were not unique. Many

faults were strongly similar to each other. When a developer observes patterns of similarity, one can

reduce the complexity of fault diagnosis by searching for other occurrences of the pattern. This action

reduces the amount of time required to produce a fault-free system.

This report documents the errors that occurred as a result of using the Python v3 compiler instead of

Python v2. Neither the application design nor its basic implementation changed. The errors, by

themselves, are not extremely important. What is important is the observation that many of the errors

appeared to be related. Because they appeared to be related, a couple of useful questions are, “Why are

they related?” and “Can the developer take advantage of the similarities?”

In this case, these errors are similar because their root cause is due to a change that is unrelated to the

application design or implementation – the compiler version change. This version change resulted in

groups of faults that were similar. By identifying the fault pattern, the developer can search the source

code for other occurrences of the pattern to identify other faults that have not yet been identified. This

reduces the total time that is necessary to produce a working system.

Although the Python compiler version change is the root cause for these errors, it is not the only change

that will produce fault patterns. An observant developer should keep this idea in mind when analyzing

faults and exploit any fault patterns when they are found.

